ANSYS HFSS 2022R2 新功能介绍

新科益系统与咨询(上海)有限公司

HFSS Highlights

✓ HFSS 3D Layout Flex PCB Workflow
 ✓ Encrypted HFSS 3D Layout Components
 ✓ HFSS Performance

2022 R2 What's New High Frequency

Matt Commens, Senior Manager Product Management

What's New – HFSS 3D Layout Flex PCB workflow

What's New

• New HFSS 3D Layout Flex PCB Workflow for any product or system using flex PCBs for connecting systems and components (e.g., connector)

User Benefits

 ✓ Helps user's setup flex PCB cable designs in HFSS Layout for rigorous 3D simulations including effects of bends and electromagnetic coupling

End User and Applicable Industries

- Engineers designing or integrated a flex cable deign into their system or product. Both the designer of the cable and the end user. Integrator
- Industries Consumer Electronics, Aerospace/Defense, 5G/6G, Autonomy

What's New – Encrypted HFSS 3D Layout Components

What's New

• The capabilities of encrypted HFSS 3D layout components now extend to support IC design flows utilizing standard foundry tech file formats including encrypted tech files

User Benefit

• Enables a smoother workflow from IC design tools into HFSS. This will greatly benefit 3D-IC and bespoke silicon design.

End User and Applicable Industries

- Engineers working with foundry technology files for defining IC stackups will now be able to work seamlessly with these design inputs.
- Industries 5G/6G, Autonomy, 3D-IC, bespoke silicon design

HFSS 3D LAYOUT COMPONENTS

What's New – HFSS Performance Improvements

What's New

• Significant improvement in Design and simulation turn around time (TAT)

User Benefit

• Faster simulations with the accuracy of HFSS

End User and Applicable Industries

• All users of HFSS but especially users solve designs at large scale in size and/or complexity

Antenna on Aircraft Tech: NUMA Optimized Windows 4 socket 77% faster

HFSS Capability/Usability

- Mesh Fusion for Layout Component [BETA]
 - Both 3D and layout components leverage mesh fusion
 - Supports component priority option
- 3D Component Mesh Priority
 - 3D Component is allowed to override native geometry
 - Component Mesh Region as tool object subtraction

- Lightweight Geometry (STL) for Hybrid Regions [BETA]
 - "Lightweight" STL geometry for hybrid MoM regions
 - Mesh feedback will identify potential STL problems
 - Mesh refinement will proceed from initial STL facets

HFSS Capability/Usability

- 3D Component Array on SBR+ Platform
 - Array can be placed in a relative coordinate system
 - Airbox is required to enclose the array
- RF Discharge Official Release
 - Expanded Gas Library
 - Enhanced accuracy for existing gases; CO2, N2, O2 plus new gases; H2, Hg, SF6, CH4
 - Electron swarm parameters verified against experiment (Raju) and BOLSIG+
 - BOLSIG+ based collision frequencies
- Additional Enhancements
 - Adapt FEBI with ABC official release
 - Continuing expansion on interactive dialogs

@ Built in Gas		Argon	-	-
		Argon CarbonDioxide		^
< curren tran	VC/N	Helum		
	DN		22	1
	W/N		1	-
	V.N		- 10	1

HFSS HPC/Performance

- Low Memory Mesh Adaptation
 - Improves the peak memory usage of direct solve involving large number of excitations

Ver.	#RHS	#unknown	Memory	Runtime
22.1	126	2,593,433	30.1 GB	00:05:59
22.2	126	2,593,433	22.5 GB	00:05:39

BAW Filter Module 50% less memory

- Enhanced Auto S-matrix Only Solve
 - Improve memory usage in frequency sweep via an improved S-matrix cutoff

- AMD Math Library for Direct Matrix Solver [BETA]
 - Automatic detection of CPU vendor, math library is used only when AMD CPU is detected

Ver.	Max Freq in Parallel	Sweep Memory	SweepTime	Smatrix Cutoff
22.1	1	32.1GB	00:21:55	1.8 THz
22.2	3	31.8GB	00:12:12	366 MHz

44%-82% faster

HFSS HPC/Performance

- Accelerated Mesh Fusion Solver [BETA]
 - Multi-node distributed matrix assembly and field recovery including 3D component array
 - Improve distributed matrix solve performance
- Support Auto HPC on NUMA Machines [BETA]
 - NUMA: Non-Uniform Memory Access
 - MPI task # based on the number of detected sockets
 - Single task will not span beyond one socket
- Scriptable Data-mining of Performance Data
 - Using object-oriented scripting framework

HFSS Performance Example

Silicon Interposer

Tech: Parallel + high quality mesh Auto iterative/direct matrix solver 23% faster

HFSS Performance Example

HFSS SBR+

- Include Region Loss in Directivity
 - Includes material loss in radiated power calculation
- GO Blockage Model
 - When the lit region is small, or in deep-shadow, GO (Geometry Optics) identifies shadow regions explicit

SBR Ray State

CW Ray Stats

- Benefit: Better shadows, better destructive interference •
- Report Ray Stats
 - Summation of ray stats for all Tx antennas
 - Reported ONCE per simulation
 - Items with 0 contributors are omitted

		5.00	Drifter no water
		5.00	₩2
	Z	0.00	
	Seawater half-space	-5.00	ERPA Imported Freq='0.4GHz' Phi='0deg
		-10.00	no ERPA Imported Freq='0.4GHz' Phi='0deg
		-15.00	Name X [deg] Y m1 90.0000 1.78
		-20.00	50.00 100.00
IS		10.00	Drifter at 1m
	0 0.5 1 (meter)	0.00	
	2.1dB difference, 6.5X longer	: -10.00	00
		-20.00 Nan	ne X[deg] Y 1 70.0000 7.3780
1		-30.00	50.00 100.00
			Theta [deg]
itly		Bnc 1 only, PO Blk 2 1+R	$\begin{bmatrix} E_s \\ 2 \end{bmatrix} \begin{bmatrix} dB \end{bmatrix}$ Br
	0.5	-11	5 0.5
	프 0	1	0 <u>H</u> 0
	-0.5	-5	-0.5
	-1	0	-1
	-1.5	-4	5 -1.5
	-2 e 2 4 (metry -1	0 1 u [m]	10 -2 -2 / I -1 I+R/R
	Num Launched = 22561; Num Blocked = 26198; Num Spill = 469214; Num Exceed Max Bnc = 25	60770; Num Escaped = 2410	105; Num Contributed = 491775
	(Rell Depth, Num Branches Escape/Terminate at) = (1,18353); (2,5531); (3,3970); (4,5964); (5,11) (Trans Depth, Num Branches Escape/Terminate at) = (2, 21108); (4, 59500); (6, 21108); (3, 25452)	710) 5 (10 11731) (12 2222) (1	4 230)
	Num Rays Launched = 1440; Num Rays Traced = 1440; Num Footprints (Across All Rays) = 9857	7	and the second () is
	Longest Ray Len (m) = 0.0659371; Shortest Ray Len (m) = 0.0273400; Average Ray Len (m) = 0.0	466667	
	Source Counts by Initialization Failure Condition: Closest Point Not Metal + 1		
	Hay Counts by Termination Condition: Geodesic Hit an Edge = 1438; Natural Decay = 2		

togram: (Num Fot per Ray Range, Num Rays) = (39 - 51, 285); (52 - 64, 352); (65 - 77, 263); (78 - 90, 427); (91 - 99, 11)

150 00

rea='0.4GHz' Phi='0d nnorter reg='0.4GHz' Phi='0d

HFSS 3D Layout

Flex PCB Workflow [Beta]

- ECAD-centric workflow for Flex PCB
 - View and edit as a PCB
 - Dedicated workflow to define zones and bends
 - Hierarchical support with 3D Components

- Specialized Flex PCB Mesning
- Automated region partitioning
- Fast, robust and high-quality bend generation
- Classic or Phi+ for volume mesh

Encrypted HFSS Layout Components

- Fields post-processing for encrypted technology
- Mesh seeding and Mesh Fusion
- Improved performance and usability
- Internal-key component generation
- Password-less editing for encrypted technology

Original

HFSS Layout Component Generator for GDS + iRCX

IC Design Mode [Beta]

- Integrated ECADXplorer functionality for higher-capacity IC editor
- End-to-end workflow for IC-scale designs: ports, mesh feedback, post-processing,...
- Specialized 3D Layout "IC Design Mode"
- IC focused functionality and scope
 - Hierarchical/cell-based navigation and editing
 - Simulation Setups and options
- Integrated end-point for GDS import

Improved Field and Mesh Overlay Plots

Single dialog selection of Setup, Field Quantity, Layers, Nets, and 3D Geometry

EMIT, Circuit, SPISim, and FilterSolutions

Results Diagnostic Tool

• View component parameters associated with result set

• Toggle spectrum interference plots at points in Tx/Rx chain

• Toggle plot of component insertion loss or coupling

 Identify root cause of saturation from contributors

New Source Components in EMC Tools Library

- AEC/JEDEC Human Body Model
- ISO10605 ESD Road Vehicles
- EFT ISO7637-2
 - Fix for burst
 - Add repeat

FilterSolutions

- 1. Primarily infrastructure changes to align with Ansys tools and libraries
- 2. Improved Automated Discrete Optimization
- 3. Enabled the ANFS / AWR interface

5-Pole Minimum Inductor Zigzag Design Created in FilterSolutions

COM-based Optimization in AEDT

Motivation:

- SPISim's COM provide multiple merit matrices for channel such as ERL, ILD and COM
- AEDT's user would like to optimize their HFSS design based on these COM matrices

Solution:

- An UDO based approach has been developed to enable such COM based optimization flow.
- UDO flow allows easy customization and extension to support future/more COM reported metrices.

Impact:

- AEDT/HFSS users now can optimize their design based on channel performance metrices provided by SPISim's COM flow.
- Customer training materials may be prepared to introduce such flow (Contact: Isaac Waldron)
- In the long run we may include these metrices as part of AEDT core post-processing.

Silent demo video: [HERE]

Update COM implementation to reference ver. V2.95

IEEE Std 802.3cd-2018

2019

N_bg N_bf N_f

3 group of 4 DFE taps

N_h fixed DFE

2018

COM 2.28

and a set of Taraly France

Motivation:

- Phase II of SPISim's COM upgrade to V2.95 (latest official ٠ 802.3ck version is V3.4) to support several important enhancement for channel analysis:
- Major enhancements:
 - Added Floating DFE taps
 - Added Eye H/W measurements (C2M), Report EW estimate
 - Board Tx/Rx structure changed
 - Include Tx package for TDR and ERL
- In addition, ~30 new keywords have also been supported.

Solution:

Enhanced SPISim COM flow in both GUI and batch model to support V2.95 based spec. compliance checking.

Impact:

- COM can support 802.3cd and 802.3ck specs. Now
- SPISim's COM does not require Matlab's signal and RF ٠ toolbox to run, not like IEEE's reference matlab implementation.
- Accuracy: ERL, COM is < 1dB difference. •

Minor activity: Config. conversion utility for ACE/QA: IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force https://ansys.sharepoint.com/:b:/r/sites/AEDT SPISim/Shared%20Documents/Compliance/COM/Utility/COMCfgConv.pdf?csf=1&web=1&e=bd2fEu

Config. and generate COM report IEEE Std 802.3ck Calculate channel operating margin (COM) analysis Info S-Params Settings COM 100GBASE CR4 Load baseline from: P802.3ck-D1.3 TABLE 93A1 TABLE 9343 TABLE 9212 TDR ERI ICN PARAM FILTER_EQ NOISE JITTER RCV NONSTD FLOATING_TAPS RX FF NAME VALUE INFO COM 2 Z_T ERL ONLY here TR TDR 8.0E-3 TDR DURATION DR_BUTTERWORTH UKEY_WINDOW True or False 2020 2021 BETA X HO_X FIXTURE DELAY TIME FIXTURE_BUILTIN_DELAY Built-in minimal TDR fixture of COM 2.95 Parameters for Floating DFE Taps and Example Values Maybe Further Refined Export... Import... Calculate 012 or 3 group taps per group I span for floating taps x DFE value for floating tag

Package Proposal with LC Termination Compensation (single sided model)

AEDT Desktop and Core

Core Framework

Pervasive Insights

- AEDT script execution from CPython
 - Beta feature in 2022 R2
 - Python script support on Windows in 2022 R2
 - Remote execution of AEDT on Windows or Linux through gRPC
 - All existing IronPython APIs available from CPython
 - Student version supported
- Query and Edit plot properties in nongraphical mode

plot method created a 2d plot using matplotlib. solutions.plot(math formula="db20", is polar=True (K) Figure 1 Simulation Results Plot db20(GainTotal) 315 -10 -30 -60 -70 -80 278 225 180° Theta

> Python script from client machine connects to AEDT on a remote machine

Post processing display improvements 2022 R1

- Rounded numbers in field plot color scale
- Redundant trailing zeros from report axes removed
- Fonts are automatically scaled based upon screen resolution
- Redundant report legend title removed

Parasolid kernel for 3D Modeler

- Beta option in 2022 R2
- All 3D Modeler functionality available
 - Except Wrap Sheet. To be supported later
- Option to migrate without model history when history migration fails
 - Geometry parametrization is lost
- Encrypted 3D components embedded in legacy projects are not translated to Parasolid
 - Marked for user to update to Parasolid version
 - Project cannot be solved until such 3D components are updated
- Non encrypted 3D components embedded in legacy projects are automatically translated to Parasolid

Options	
 Beneral 2D Extractor HFSS HFSS 3D Layout Icepak Maxwell 2D Maxwell 3D Mechanical Q3D RMxprt 3D Modeler Drawing 	Faceting ↓ Incremental faceting (facet only modified faces of object) ↓ Facet bodies face by face using multiple processors UDM/UDP Geometry Computation for Optimetrics Analysis ↓ Engine computes the geometry ↓ Desktop computes the geometry ↓ Geometry computation for models with CAD integration (dynamic geometry sharing in Ansys Workbench is always by Desktop.
Snap Display Group SpaceClaim Link Advanced	Geometry Kernel Options

Meshing

2022R2 EBU Meshing features

- Parallel Meshing Refinement PMR [BETA]
 - Load predictor and decomposition (up-to specified # of threads)
 - PMR not supported for Q3D

Check box in Beta Options

2022R2 EBU Meshing features (Cont'd)

- Layer-by-layer meshing in 2D MLM
 - Auto decomposition in "thickness" direction
 - ANSYSEM_FEATURE_S425570_Icepak_Hdm_Cart2d_Blocking_ENABLE (for AEDT Icepak)

Top layer

Thermal

Thermal Design Creation from HFSS/Maxwell/Q3D (Beta)

- Automated creation of linked thermal design from a source EM design
 - Icepak/Mechanical target designs created
 - Source can be HFSS/Maxwell/Q3D
 - 3D components supported
- Boundary conditions and excitations created automatically
 - Forced convection & Natural convection domains (Icepak)
 - Conduction setup (Mechanical) —
 - Solution setup created in ready-to-run design

ri ujetti manager - Coaxbend*

> 💤 HFSSDesign 1 (Hybrid Modal Network) IcepakDesign1 (SteadyState)*

> > EM Loss

3D Components

A Model 🗄 🗗 Thermal

Core Technology/Solvers

Translation Motion with Moving Part Touching Stationary Part

- In simulation with non-periodic translational motion, the moving part can touch the stationary part
- Requirements of the touching boundary setup:
 - The touching boundary should be defined on the surface of the moving part.
 - At any time step, each touching boundary must either fully touches the stationary part or completely separated from the stationary part. The touching boundary can not partially touch the stationary part at any time.
 - The touching boundary can not touch the boundary of the computational region.

Thin Layer and Insulation Boundary for 3D AC Conduction Design

• Insulating BC

- Thin layer BC
 - Can be used to model:
 - Contact resistance:
 σ > 0, ε_r = 1
 - Insulation capacitive effect:

 σ = 0, ε_r > 1
 - Thin lossy material: $\sigma > 0, \epsilon_r > 1$
 - Supports thermal coupling

Improvements of Force Calculation in Electrostatic Solver

Surface/Volumetric force density on dielectric materials, conductors and charged objects

- Field display of surface/volumetric force density

One-way force coupling in WB/AEDT

 Support one-way Maxwell-Mechanical force coupling: surface force density and volumetric force density

Surface force density distribution

Nonlinear Material for the Electric Transient Solution

- Motivation
 - Semi-conductor and high-voltage industries
- Proposed method
 - The non-linear model was included in the Rosenbrock time-integration scheme
 - Non-linear iterations are not necessary
 - Keep the time interpolation capability for the fields
 - Supports only σ non-linear

Element-Based Harmonic Force Export in .CSV File

Element-Based volumetric harmonic force density export in CSV file with 3D transient

- Export file in post processing: one solving, multiple exports
- Flexible frequency range
- Support variable time step
- Support TDM, Partial model
- One line for one element, multiple frequencies

Mapping is done by Mechanical

- Better mapping solution in PCB applications
- Import as external loads in Mechanical

Limitations:

Only available for 3D transient, element-based volumetric harmonic force

Gene	ral Options					
	Export Type:	Ansys Mecha	anical	•		
	Parametric Setup:	<none></none>		7		
	Solution Setup:	Setup1		•		
	Path:	\$PROJECTD	IR			
					OK	Cancel
					U.I.	
mont	Transient / Harmo	- nic Force		-		
Export	Transient / Harmo	onic Force				:
Export	t Transient / Harmo	onic Force				:
Export Gener	t Transient / Harmonal Options	onic Force		-		;
Export	t Transient / Harmo ral Options Output Frequency	onic Force Range:				
Export	t Transient / Harmo ral Options Output Frequency I✓ Output All Fr Start Frequency	Range: requencies	0		Hz	
Gener	Transient / Harmo ral Options Output Frequency Output All Fr Start Frequency © Use Range	Range: requencies	0		Hz	-
Gener	t Transient / Harmo ral Options Output Frequency I✓ Output All Fr Start Frequency I Use Range End Frequ	nic Force Range: requencies : ency:	0		Hz	- - -
Gener	t Transient / Harmo ral Options Output Frequency I Output All Fr Start Frequency © Use Range End Frequ C Use Numbe	Range: requencies :: ency:	0		Hz	- - -
Gener	t Transient / Harmo ral Options Output Frequency I Output All Fr Start Frequency © Use Range End Frequ C Use Number Number of	Range: requencies : ency: r Frequencies:	0		Hz	- - -
Export	t Transient / Harmo ral Options Output Frequency I Output All Fr Start Frequency © Use Range End Frequ C Use Numbe Number of	ency: Frequencies:	0		Hz	-
Export	t Transient / Harmo ral Options Output Frequency I Output All Fr Start Frequency I Use Bange End Frequ C Use Numbe Number of	ency:	0		Hz Hz OK	▼ ▼ Cancel

High Performance Computing

7 3D Electrostatic - Capacitance Matrix Extraction

- Shared Memory Parallel Iterative solver to speed-up capacitance matrix extraction
- Motivation:
 - Need to speed-up capacitance matrix extraction for large matrices
 - Several right-hand-side (RHS's): Solve the linear system "RHS" times
 - Large number of DoFs
 - Computation time and memory improvements
- Proposed method:
 - The preconditioner only needs to run once
 - Memory proportional to the number of parallel threads
 - Trade-off between computation time and memory
 - Uses the general Preconditioned Conjugate Gradient (PCG) algorithm in parallel

3D Electrostatic - Capacitance Matrix Extraction

• Benchmark Results > 10x speed up for some cases

	Case	e A-1	Case	e A-2	Case	e A-3	Case	e A-4	Cas	se B
NZ	4.6E	+07	1.5E	E+07	4.6E	+07	1.5E	+07	4.7E	E+07
DoF	3.3E	+06	1.1E	+06	3.3E	+06	1.1E	+06	3.5E	E+06
RHS	1	80	1	08	1	80	1	80		4
Cores		8		8	3	32	3	32	3	32
Method	Time	Mem.	Time	Mem.	Time	Mem.	Time	Mem.	Time	Mem
Method PCG Serial	Time 106	Mem. 1.91	Time 30	Mem. 0.6	Time 107	Mem. 1.91	Time 30	Mem. 0.6	Time 10	Mem 2
Method PCG Serial Direct Serial	Time 106 14	Mem. 1.91 31.9	Time 30 3	Mem. 0.6 10.5	Time 107 14	Mem. 1.91 37	Time 30 3	Mem. 0.6 10.5	Time 10 4	Mem 2 18
Method PCG Serial Direct Serial BLPCG	Time 106 14 210	Mem. 1.91 31.9 23.3	Time 30 3 49	Mem. 0.6 10.5 7.6	Time 107 14 74	Mem. 1.91 37 21.3	Time 30 3 18	Mem. 0.6 10.5 7.6	Time 10 4 7	Mem 2 18 2.9

Times are in minutes and memory in GB.

nulati	ion: Seti	up1		▼ LastAda	ptive		•		
sign	Variation:								
			,						
rofile	Convergence	Force Mat	ix Mesh Stati	stics					
-			Trans	0					1
Pa	rameter: Matrix	1 💌	Type:	Capac	atance	-			
Pa	ss: 10	Ψ.	Capacitance	Units: pF	-				
	,								
Vi	ew Format	Export							1
_									
	V1	V2	V4	V5	V6	V7	V8	V9	V3
V1	0.12949	-0.041914	-0.060987	-0.0083911	-7.0933E-05	-0.0036583	-0.00016883	-3.1323E-05	-0.0009239
V1 V2	0.12949 -0.041914	-0.041914 0.15341	-0.060987 -0.0084773	-0.0083911 -0.050271	-7.0933E-05 -0.0085863	-0.0036583 -0.00011903	-0.00016883 -0.00014211	-3.1323E-05 -0.00013056	-0.0009239 -0.043164
V1 V2 V4	0.12949 -0.041914 -0.060987	-0.041914 0.15341 -0.0084773	-0.060987 -0.0084773 0.27057	-0.0083911 -0.050271 -0.0653	-7.0933E-05 -0.0085863 -0.00015188	-0.0036583 -0.00011903 -0.098313	-0.00016883 -0.00014211 -0.013922	-3.1323E-05 -0.00013056 -0.00023428	-0.0009239 -0.043164 -7.0671E-05
V1 V2 V4 V5	0.12949 -0.041914 -0.060987 -0.0083911	-0.041914 0.15341 -0.0084773 -0.050271	-0.060987 -0.0084773 0.27057 -0.0653	-0.0083911 -0.050271 -0.0653 0.30888	-7.0933E-05 -0.0085863 -0.00015188 -0.066754	-0.0036583 -0.00011903 -0.098313 -0.013634	-0.00016883 -0.00014211 -0.013922 -0.081069	-3.1323E-05 -0.00013056 -0.00023428 -0.014645	-0.0009239 -0.043164 -7.0671E-05 -0.0085527
V1 V2 V4 V5 V6	0.12949 -0.041914 -0.060987 -0.0083911 -7.0933E-05	-0.041914 0.15341 -0.0084773 -0.050271 -0.0085863	-0.060987 -0.0084773 0.27057 -0.0653 -0.00015188	-0.0083911 -0.050271 -0.0653 0.30888 -0.066754	-7.0933E-05 -0.0085863 -0.00015188 -0.066754 0.28635	-0.0036583 -0.00011903 -0.098313 -0.013634 -0.00021708	-0.00016883 -0.00014211 -0.013922 -0.081069 -0.014979	-3.1323E-05 -0.00013056 -0.00023428 -0.014645 -0.1055	-0.0009239 -0.043164 -7.0671E-05 -0.0085527 -0.066955
V1 V2 V4 V5 V6 V7	0.12949 -0.041914 -0.060987 -0.0083911 -7.0933E-05 -0.0036583	-0.041914 0.15341 -0.0084773 -0.050271 -0.0085863 -0.00011903	-0.060987 -0.0084773 0.27057 -0.0653 -0.00015188 -0.098313	-0.0083911 -0.050271 -0.0653 0.30888 -0.066754 -0.013634	-7.0933E-05 -0.0085863 -0.00015188 -0.066754 0.28635 -0.00021708	-0.0036583 -0.00011903 -0.098313 -0.013634 -0.00021708 0.34006	-0.00016883 -0.00014211 -0.013922 -0.081069 -0.014979 -0.12558	-3.1323E-05 -0.00013056 -0.00023428 -0.014645 -0.1055 -0.005846	-0.0009239 -0.043164 -7.0671E-05 -0.0085527 -0.066955 -2.9302E-05
V1 V2 V4 V5 V6 V7 V8	0.12949 -0.041914 -0.060987 -0.0083911 -7.0933E-05 -0.0036583 -0.00016883	-0.041914 0.15341 -0.0084773 -0.050271 -0.0085863 -0.00011903 -0.00014211	-0.060987 -0.0084773 0.27057 -0.0653 -0.00015188 -0.098313 -0.013922	-0.0083911 -0.050271 -0.0653 0.30888 -0.066754 -0.013634 -0.081069	-7.0933E-05 -0.0085863 -0.00015188 -0.066754 0.28635 -0.00021708 -0.014979	-0.0036583 -0.00011903 -0.098313 -0.013634 -0.00021708 0.34006 -0.12558	-0.00016883 -0.00014211 -0.013922 -0.081069 -0.014979 -0.12558 0.4131	-3.1323E-05 -0.00013056 -0.00023428 -0.014645 -0.1055 -0.005846 -0.12975	-0.0009239 -0.043164 -7.0671E-05 -0.0085527 -0.066955 -2.9302E-05 -0.00016705
V1 V2 V4 V5 V6 V7 V8 V9	0.12949 -0.041914 -0.060987 -0.0083911 -7.0933E-05 -0.0036583 -0.00016883 -3.1323E-05	-0.041914 0.15341 -0.0084773 -0.050271 -0.0085863 -0.00011903 -0.00014211 -0.00013056	-0.060987 -0.0084773 0.27057 -0.0653 -0.00015188 -0.098313 -0.013922 -0.00023428	-0.0083911 -0.050271 -0.0653 0.30888 -0.066754 -0.013634 -0.081069 -0.014645	-7.0933E-05 -0.0085863 -0.00015188 -0.066754 0.28635 -0.00021708 -0.014979 -0.1055	-0.0036583 -0.00011903 -0.098313 -0.013634 -0.00021708 0.34006 -0.12558 -0.005846	-0.00016883 -0.00014211 -0.013922 -0.081069 -0.014979 -0.12558 0.4131 -0.12975	-3.1323E-05 -0.00013056 -0.00023428 -0.014645 -0.1055 -0.005846 -0.12975 0.35558	-0.0009239 -0.043164 -7.0671E-05 -0.0085527 -0.066955 -2.9302E-05 -0.00016705 -0.0037168
V1 V2 V4 V5 V6 V7 V8 V9 V3	0.12949 -0.041914 -0.060987 -0.0083911 -7.0933E-05 -0.0036583 -0.00016883 -3.1323E-05 -0.0009239	-0.041914 0.15341 -0.0084773 -0.050271 -0.0085863 -0.00011903 -0.00014211 -0.00013056 -0.043164	-0.060987 -0.0084773 0.27057 -0.0653 -0.00015188 -0.098313 -0.013922 -0.00023428 -7.0671E-05	-0.0083911 -0.050271 -0.0653 0.30888 -0.066754 -0.013634 -0.081069 -0.014645 -0.0085527	-7.0933E-05 -0.0085863 -0.00015188 -0.066754 0.28635 -0.00021708 -0.014979 -0.1055 -0.066955	-0.0036583 -0.00011903 -0.098313 -0.013634 -0.00021708 0.34006 -0.12558 -0.005846 -2.9302E-05	-0.00016883 -0.00014211 -0.013922 -0.081069 -0.014979 -0.12558 0.4131 -0.12975 -0.00016705	-3.1323E-05 -0.00013056 -0.00023428 -0.014645 -0.1055 -0.005846 -0.12975 0.35558 -0.0037168	-0.0009239 -0.043164 -7.0671E-05 -0.0085527 -0.066955 -2.9302E-05 -0.00016705 -0.0037168 0.13705
V1 V2 V4 V5 V6 V7 V8 V9 V3	0.12949 -0.041914 -0.060987 -0.0083911 -7.0933E-05 -0.0036583 -0.00016883 -3.1323E-05 -0.0009239	-0.041914 0.15341 -0.0084773 -0.050271 -0.0085863 -0.00011903 -0.00014211 -0.00013056 -0.043164	-0.060987 -0.0084773 0.27057 -0.0653 -0.00015188 -0.098313 -0.013922 -0.00023428 -7.0671E-05	-0.0083911 -0.050271 -0.0653 0.30888 -0.066754 -0.013634 -0.081069 -0.014645 -0.0085527	-7.0933E-05 -0.0085863 -0.00015188 -0.066754 0.28635 -0.00021708 -0.014979 -0.1055 -0.066955	-0.0036583 -0.00011903 -0.098313 -0.013634 -0.00021708 0.34006 -0.12558 -0.005846 -2.9302E-05	-0.00016883 -0.00014211 -0.013922 -0.081069 -0.014979 -0.12558 0.4131 -0.12975 -0.00016705	-3.1323E-05 -0.00013056 -0.00023428 -0.014645 -0.1055 -0.005846 -0.12975 0.35558 -0.0037168	-0.0009239 -0.043164 -7.0671E-05 -0.0085527 -0.06655 -2.9302E-05 -0.00016705 -0.0037168 0.13705
V1 V2 V4 V5 V6 V7 V8 V9 V3	0.12949 -0.041914 -0.060987 -0.0083911 -7.0933E-05 -0.0036583 -0.00016883 -3.1323E-05 -0.0009239	-0.041914 0.15341 -0.0084773 -0.050271 -0.0085863 -0.00011903 -0.00014211 -0.00013056 -0.043164	-0.060987 -0.084773 0.27057 -0.0653 -0.0015188 -0.098313 -0.013922 -0.00023428 -7.0671E-05	-0.0083911 -0.050271 -0.0653 0.30888 -0.066754 -0.013634 -0.081069 -0.014645 -0.0085527	-7.0933E-05 -0.0085863 -0.00015188 -0.066754 0.28635 -0.00021708 -0.014979 -0.1055 -0.066955	-0.0036583 -0.00011903 -0.098313 -0.013634 -0.00021708 0.34006 -0.12558 -0.005846 -2.9302E-05	-0.00016883 -0.00014211 -0.013922 -0.081069 -0.014979 -0.12558 0.4131 -0.12975 -0.00016705	-3.1323E-05 -0.00013056 -0.00023428 -0.014645 -0.1055 -0.005846 -0.12975 0.35558 -0.0037168	0.0009239 0.043164 -7.0671E-05 -0.0085527 -0.066955 -2.9302E-05 -0.00016705 -0.0037168 0.13705

新科益工程仿真中心

咨询邮箱 : ansyssupport@cadit.com.cn 公司网址 : http://www.cadit.com.cn